Indirect Adaptive Control with Fuzzy Neural Networks via Kernel Smoothing
نویسندگان
چکیده
In this paper, a neurofuzzy adaptive control framework for discrete-time systems based on kernel smoothing regression is developed. Kernel regression is a nonparametric statistics technique used to determine a regression model where no model assumption has been done. Due to similarity with fuzzy systems, kernel smoothing is used to obtain knowledge about the structure of the fuzzy system and this information is used as initial conditions of the adaptive neurofuzzy control. Results of simulation shows the efficiency of this technique
منابع مشابه
Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملAn Extended Neo-Fuzzy Neuron and its Adaptive Learning Algorithm
A modification of the neo-fuzzy neuron is proposed (an extended neo-fuzzy neuron (ENFN)) that is characterized by improved approximating properties. An adaptive learning algorithm is proposed that has both tracking and smoothing properties and solves prediction, filtering and smoothing tasks of non-stationary “noisy” stochastic and chaotic signals. An ENFN distinctive feature is its computation...
متن کاملAutomated Nonlinear System Modeling with Multiple Fuzzy Neural Networks and Kernel Smoothing
This paper, presents a novel identification approach using fuzzy neural networks. It focuses on structure and parameters uncertainties which have been widely explored in the literatures. The main contribution of this paper is that an integrated analytic framework is proposed for automated structure selection and parameter identification. A kernel smoothing technique is used to generate a model ...
متن کاملIndirect Vector Control of Induction Motor using ANN Estimator and ANFIS Controlle
This paper proposes the neural network solution to the indirect vector control of three phase induction motor including an adaptive neuro fuzzy controller. The basic equations and elements of the indirect vector control scheme are given. The proposed control scheme is realized by an adaptive neuro-fuzzy controller and two feed forward neural network. The neuro-fuzzy controller incorporates fuzz...
متن کامل