Indirect Adaptive Control with Fuzzy Neural Networks via Kernel Smoothing

نویسندگان

  • Israel Cruz-Vega
  • Luis Moreno-Ahedo
  • Wen Yu Liu
چکیده

In this paper, a neurofuzzy adaptive control framework for discrete-time systems based on kernel smoothing regression is developed. Kernel regression is a nonparametric statistics technique used to determine a regression model where no model assumption has been done. Due to similarity with fuzzy systems, kernel smoothing is used to obtain knowledge about the structure of the fuzzy system and this information is used as initial conditions of the adaptive neurofuzzy control. Results of simulation shows the efficiency of this technique

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

An Extended Neo-Fuzzy Neuron and its Adaptive Learning Algorithm

A modification of the neo-fuzzy neuron is proposed (an extended neo-fuzzy neuron (ENFN)) that is characterized by improved approximating properties. An adaptive learning algorithm is proposed that has both tracking and smoothing properties and solves prediction, filtering and smoothing tasks of non-stationary “noisy” stochastic and chaotic signals. An ENFN distinctive feature is its computation...

متن کامل

Automated Nonlinear System Modeling with Multiple Fuzzy Neural Networks and Kernel Smoothing

This paper, presents a novel identification approach using fuzzy neural networks. It focuses on structure and parameters uncertainties which have been widely explored in the literatures. The main contribution of this paper is that an integrated analytic framework is proposed for automated structure selection and parameter identification. A kernel smoothing technique is used to generate a model ...

متن کامل

Indirect Vector Control of Induction Motor using ANN Estimator and ANFIS Controlle

This paper proposes the neural network solution to the indirect vector control of three phase induction motor including an adaptive neuro fuzzy controller. The basic equations and elements of the indirect vector control scheme are given. The proposed control scheme is realized by an adaptive neuro-fuzzy controller and two feed forward neural network. The neuro-fuzzy controller incorporates fuzz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012